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Addition of Impella on top of venoarterial extracorporeal membrane oxygenation (VA-ECMO) has gained wide interest as it might portend

improved outcomes in patients with cardiogenic shock. This has been consistently reported in retrospective propensity-matched studies, case

series, and meta-analyses.

The pathophysiologic background is based on the mitigation of ECMO-related side effects and the additive benefit of myocardial unloading. In

this perspective, thorough knowledge of these mechanisms is required to optimize the management of mechanical circulatory support with this

approach and introduce best practices, as the interplay between the two devices and the implantation-explantation strategies are key for success.

� 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)
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VENOARTERIAL EXTRACORPOREAL MEMBRANE
 related available techniques is discussed. Finally, the combined
OXYGENATION (VA-ECMO) commonly is used to support

patients with refractory cardiac arrest or cardiogenic shock,1�3

mainly via percutaneous cannulation.4 This strategy may cause

left ventricle (LV) distention that compromises myocardial

recovery.5 Direct LV unloading provided by Impella was asso-

ciated with lower mortality in patients with cardiogenic shock

supported with VA-ECMO in a recent international multicen-

ter study.6

The present paper has a specific purpose to provide a complete

overview of this strategy, starting from a solid pathophysiologic

approach. Then, the rationale for unloading the LV and the
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configuration of VA-ECMO and Impella (ECPella) is fully

treated, providing its significant clinical applications.
Pathophysiologic Background

Left Ventricle Pressure-Volume Loop

The mechanical and hemodynamic properties of the heart

are shown by the ventricular pressure-volume loop (PVL). The

PVL describes the four phases of the cardiac cycle, respec-

tively: (1) isovolumic contraction, (2) ejection, (3) isovolumic

relaxation, and (4) filling.

Typically, the PVL is characterized by the intrinsic (ventric-

ular) properties of the myocardium and by the influence of the

extrinsic vascular conditions.

The ventricular intrinsic properties are represented by two

lines that inscribe the PVL shape. The end-systolic pressure-

volume relationship is linear.7 On the contrary, the end-dia-

stolic pressure- volume line is a nonlinear relationship and

reflects the diastolic properties.8
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Differently, the extrinsic conditions mainly are defined by

the concepts of preload and afterload. The end-diastolic vol-

ume (and, therefore, pressure) indicate the preload, which is a

surrogate of the sarcomere length. Differently, the afterload

can be depicted on the pressure-volume plane by the “effective

arterial elastance” line, influenced by the systemic vascular

resistances, the heart rate, and, finally, the preload 9 (see

Table 1 and Figure 1).

Finally, the PVL defines the determinants of myocardial

oxygen consumption.8 The most important determinant is the

pressure-volume area (PVA). The PVA is the sum of the exter-

nal stroke work and the potential energy, which represents the

residual energy stored in the myofilaments at the end of sys-

tole. Myocardial oxygen consumption (MVO2) is linearly

related to ventricular PVA; therefore, any increase in PVA cor-

responds to a linear increase in MVO2
10 (see Figure 2).
Pressure-Volume Loop on Peripheral VA-ECMO

During cardiogenic shock, VA-ECMO primarily alleviates

the hemometabolic shock associated with low-output state,

supporting the cardiopulmonary system and secondarily reduc-

ing the heart’s preload, by drawing blood from the right

atrium.

However, a direct hemodynamic consequence after periph-

eral VA-ECMO implantation is the increase of LV afterload,

moving the arterial elastance line to the right. In this condition,

only the LV volume increase allows overcoming the high gen-

erated afterload through the Starling’s Law. As a result, the

subsequent LV distention leads to increased LV end-diastolic

pressure, left atrial pressure and pulmonary capillary wedge
Table 1

Main Pressure-Volume Loop Features Related to Figure 1.

Intrinsic Properties

ESPVR The linear relationship is defined by 2 main features7:

- the slope is the end-systolic elastance (Ees), a load-

independent LV contractility parameter. Therefore, different

loading conditions lead to distinct PVLs which move along

the same ESPVR line defined by identical Ees.

- the volume�axis intercept Vo

EDPVR The nonlinear relationship defines only the passive diastolic

properties of the ventricle and represents diastolic stiffness.

These properties are influenced by pressure and required

sophisticated engineering assumptions. Consequentially,

diastolic properties are difficult to apply in practice.8

Extrinsic Properties

Ved The end diastolic volume (Ved) defines the pre-load which is

strongly determined by the venous return.9

Ea The arterial elastance (Ea) connects the Ved with the end

systolic pressure volume. The Ea line slope is defined by the

ratio between systemic vascular resistance (SVR) and the

duration of the heartbeat. Therefore, Ea is influenced by the

SVR, the heart rate and the preload (Ved).9

Others

SV The stroke volume (SV) is the width of the loop. The product

between SV and heart rate is the cardiac output.

Pes The Pes (ventricular end-systolic pressure) represents the

height of the loop
pressure that may cause pulmonary edema. Indeed, this mech-

anism is particularly unfavorable because slight LV volume

increases may cause large increases in end-diastolic pressure.

The global effect is the shift of PVL rightward and upward

along the end-diastolic pressure-volume relationship, becom-

ing progressively narrow and taller (see Figure 3). Translating

these changes in hemodynamic terms: PVA increases despite

the stroke- volume reduction. Therefore, the poorly oxygen-

ated blood due to pulmonary edema and the increased myocar-

dial oxygen demand might further worsen the LV function.7

Venting the Left Ventricle

Rationale of LV Venting

LV overload caused by peripheral VA-ECMO is a crucial

concern for LV recovery. The detrimental effect of retrograde

flow in the aorta that might lead to LV dilatation, increased

left atrial pressure, and pulmonary edema is prominent. More-

over, it jeopardizes ventricular recovery, particularly in the

presence of ischemia-induced myocardial impairment. In case

of extreme overload and severe LV dysfunction, the aortic

valve may remain closed, even during systole, causing blood

stasis in the LV and increasing the risk of thrombus

formation.11

LV Venting Techniques

When the pharmacologic LV venting, through the modula-

tion of LV contractility and systemic vascular resistance

(SVR), is insufficient, mechanical strategies should be utilized

to decompress the left ventricle. The first step considered usu-

ally was intra-aortic balloon pump (IABP) counterpulsation,

which unloads the LV by afterload reduction.12 Nevertheless,

more sophisticated approaches are required in order to over-

come significant ventricular overload. These include surgical

techniques or percutaneous techniques.

A review paper showed an increased use of percutaneous

techniques, confirming the growing attention to noninvasive

approaches.13 The percutaneous approach might consist of

placing a venting cannula in the pulmonary artery or in the left

side through the transaortic or transseptal approach. Further-

more, different percutaneous assist devices, such as Impella or

Tandem Heart, may be useful for avoiding or reducing the LV

overload.11 The most common locations of unloading were the

left atrium (31%), followed by the aorta/IABP (27%) and

transaortic (27%).11 As a matter of fact, the optimal technique

and the target patient population who actually will benefit

from venting procedures are still under investigation.

ECPella

Among percutaneous devices, Impella (Abiomed, Danvers,

MA) represents the most extensively validated solution. The

Impella is a catheter-mounted microaxial flow pump capable

of drawing from 2.5-to- 6.0 L/min of blood from the LV into

the aortic root, across the aortic valve. The current use of



Fig 1. Pressure volume loop. Pressure volume loop is bounded by the end-systolic pressure-volume relationship (ESPVR) and end-diastolic pressure-volume rela-

tionship (EDPVR).

Ea, arterial elastance; Ees, end-systolic elastance; P, pressure; Pes, end-systolic pressure; V, volume; Ved, end-diastolic volume.
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Impella and VA-ECMO is called "ECPella" and is an efficient

technique to unload the LV.6

Hemodynamics of ECPella

As previously discussed, VA-ECMO support in cardiogenic

shock leads to a significant afterload increase, which shifts the

PVL upward and rightwards. The overall effects consist of

higher end-diastolic volume, stroke work rise, and MVO2

increase. This overload condition might be followed by

increased left atrial and capillary wedge pressures and pulmo-

nary oedema.14

The hemodynamic effects generated by Impella may be

summarized in three main concepts analyzing the single role
Fig 2. Left ventricular energetics. The sum of the stroke work (SW)
of this device: (1) increasing cardiac power output, (2) increas-

ing oxygen supply, and (3) decreasing oxygen demand.

First of all, the Impella’s outflow, placed in the aortic root,

provides an active flow that depends on the pump support set-

ting (P level) and the aorta-LV pressure gradient. The combi-

nation between P level setting and pressure gradient, as a

consequence of VA-ECMO support and afterload, results in a

forward flow that is significantly increased by Impella.15,16

Second, Impella is able to raise oxygen supply. The flow

through the coronary arteries is influenced by the pressure gra-

dient across the artery and vascular resistance. Assuming the

venous pressure and the primary artery tract resistance as

fixed, the flow depends on the microvascular resistance and

aortic pressure. In addition to the increased ascending aortic
and potential energy (PE) is called pressure-volume area (PVA).



Fig 3. Pressure-volume loop changes in venoarterial extracorporeal membrane oxygenator support during cardiogenic shock. The pressure-volume loop moves

rightward and becomes narrow.

ESPVR, end-systolic pressure-volume relationship; EDPVR, end-diastolic pressure�volume relationship; Ea, arterial elastance; Ees, end-systolic elastance; P,

pressure; Pes, end-systolic pressure; V, volume; Ved, end-diastolic volume.
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pressure, the unloading of the LV, reducing end-diastolic pres-

sure and volume, causes reductions of wall tension and micro-

vascular resistance, according to Laplace’s Law.7

These assumptions are supported by different investigations:

Sauren et al reported a maximum 47% increase in coronary

flow with Impella in animals,17 and Remmelink et al reported

this augmentation in humans.18 The microvascular effects were

studied by Aqel et al using a perfusion imaging technique; this

experience showed the improvement of myocardial perfusion

with Impella support, explained by the augmentation of the

blood flow through the collateral pathways. Finally, the total

result of the combination between these factors leads to the

myocardial oxygen supply’s increase.19 Third, the Impella’s

inflow drainage reduces ventricular end-diastolic volume and

pressure, left atrial and wedge pressures, drawing blood directly

from the ventricle.15 Sauren et al showed a significant reduction

from baseline in mechanical work and end-diastolic pressure-

volume with Impella17 in an acute animal model, further con-

firmed by Valgimigli et al.18 As a consequence of reducing

mechanical work and decreasing myocardial wall tension, the

myocardial oxygen demand is lowered.20�22

Overall, the total balance of myocardial oxygen demand and

supply becomes favorable.15,17 Reesink et al, considering only

the kinetic work, demonstrated a 36% improvement with

Impella compared with an 18% improvement with IABP.15

Differently, Sauren et al took into consideration the potential

energy component, reporting a 69% improvement with Impella

compared with 15% with IABP.17

Pressure-Volume Loops of ECPella

To summarize, the hemodynamic effects of Impella in com-

bination with VA-ECMO may be identified as direct or indi-

rect (see Figure 4):
1. Direct: the first direct impact is the loss of isovolumic

periods, caused by continuous pumping of blood from the LV

to the aorta, independently of the phase of the cardiac cycle.

The lack of these components modifies the PVL from its nor-

mal trapezoidal shape to a triangular shape. LV results in pro-

gressive unloading, shifting the PVL leftward.23

2. Indirect: all of these changes cause reductions in PVA

and MVO2, improving blood oxygenation, systemic pressure,

and perfusion, leading to beneficial secondary changes in LV

contractility and SVR.24 Furthermore, Impella, as an unload-

ing strategy in combination with VA-ECMO, has relevant

effects on the pulmonary and systemic hemodynamics.25 First,

total blood flow increases, and pulmonary artery wedge pres-

sure decreases. Second, the increase in pulmonary artery

capacitance exceeds the reduction in pulmonary vascular resis-

tance; thus, increasing the pulmonary artery time constant,

being the product of pulmonary artery capacitance and pulmo-

nary vascular resistance. The increase in pulmonary artery

capacitance is particularly relevant, being a measure of pulsa-

tile right ventricle (RV) afterload.26 Therefore, the global

result should be the reduction of RV afterload, increasing right

stroke volume and reducing arterial CO2 pressure � end-tidal

CO2 gradient, caused by the reduction of alveolar deadspace

ventilation. Importantly, this reduced arterial CO2 pressure-

end-tidal CO2 gradient remains abnormal, and indicates resid-

ual ventilation-perfusion abnormalities, which, in combination

with increased LV output, might induce delivery of poorly

oxygenated blood into the systemic circulation, as confirmed

by the reduction in right radial arterial oxygen saturation. This

phenomenon might be particularly evident in the upper half of

the body and depends either on the residual gas exchange

abnormalities in the lungs or the anteroretrograde balance of

blood flow, generated between LV output and the extra-corpo-

real life support arterial cannula and warrants continuous



Fig 4. LV venting techniques and related pressure-volume loops. In case of cardiac failure (shock or arrest), ECPella provides full left ventricle unloading. In

ECPella configuration, the pressure-volume loop moves leftward and becomes triangular.
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monitoring, especially in the early phases until pulmonary

edema is resolved and gas exchange is improved.22

ECPella Evidences

After a preliminary case series,27 Pappalardo et al showed

that patients supported with the ECPella strategy not only had

improved outcomes but also showed a trend toward higher left

ventricular ejection fraction after weaning. This experience

investigated 34 ECPella support: after propensity score match-

ing, the ECPella group presented significantly lower in-hospi-

tal mortality (47% v 80%, p < 0.001) and a higher rate of

successful bridging to either recovery or further therapy (68%

v 28%, p < 0.001), as compared with VA-ECMO alone

patients.28

Patel et al showed similar results with 30-day mortality sig-

nificantly lower in the ECPella cohort (57 v 78%; hazard ratio

0.51[0.28-0.94], log rank p = 0.02); moreover, the inotropic

score was greater in the VA-ECMO group by day two (11 v 0;

p = 0.001). Bridge to recovery, although not statistically signif-

icant, was numerically almost double in the ECPella cohort

(40% v 22%; p = 0.18); bridge to left ventricular assist device

(LVAD) was more prevalent in the ECPella group as well (33

v 13%; p = 0.60). No statistically significant differences in

terms of hemolysis, bleeding, renal failure, and stroke were

observed.29 This was further corroborated by the work of

Truby et al, which showed that myocardial recovery was

higher in patients without left ventricular distention, prompting

the need for LV venting.30 They also identified extracorporeal

cardiopulmonary resuscitation as the clinical scenario with

higher need for decompression. Interestingly, these figures

were independent from the site of arterial cannulation (femo-

ral, central or axillary) and were reported in a group of patients

receiving an average ECMO flow of 3.6 L/min.30

Finally, Schrage et al recently reported the most important

evidence on the combined use of Impella and VA-ECMO. In

this international, multicenter cohort study, 255 propensity-

matched patients supported with ECPella were compared with
255 patients supported with only VA-ECMO. Left ventricular

unloading was associated with lower mortality in patients with

cardiogenic shock treated with VA-ECMO, despite higher

complication rates.6

Clinical Applications

Different Models and Different Placement

The Impella devices are commercially available in different

models, characterized by their capacity to guarantee different

support 31 (ranging from 2.5-to-6 L/min):

� the Impella 2.5 (maximum flow rate 2.5 L/min): percutane-

ous insertion with a 12-Fr sheath in the femoral artery
� the Impella CP (3.0-4.0 L/min): percutaneous insertion with

a 14-Fr sheath in the femoral artery
� the Impella 5.0 (5.0 L/min): surgical cut-down insertion

with a 21-Fr sheath; axillary artery is the preferred site of

placement, facilitating ambulation and a longer period of

support
� the Impella 5.5 (up to 6.0 L/min): surgical cut-down insertion

with a 21-Fr-sheath; axillary artery or directly to the ascending

aorta, facilitating long-term use and full LV unloading

The Impella 2.5/CP is FDA-approved to provide circulatory

support for up to five days and the Impella 5.0 is approved for

up to ten days.32 The new Impella 5.5 with ceramic bearings is

intended for prolonged use, up to 30 days.

Contraindications

ECPella has the same contraindications as isolated Impella

support: LV thrombus, mechanical aortic valve, and significant

aortic regurgitation. In these scenarios, other venting strategies

should be pursued. For instance, IABP may be the less-inva-

sive approach compared with a cannula connected to the drain-

age side of the VA-ECMO circuit, which might be more
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elaborate. Furthermore, significant arterial disease should be

systematically investigated in order to quantify the risk of nav-

igating through an atherosclerotic aorta.33

Device Selection, Timing, and Targets

The adequate Impella device should be chosen according to

the amount of required support34�36 and the severity of hemo-

dynamic compromise.

In VA-ECMO and concomitant Impella support, the total

cardiac output is not simply the sum of the preinsertion cardiac

output and the flow generated by the Impella. Since the LV

should be fully or partially unloaded by the Impella device, the

native heart contribution subsequentially decreases.18

The Impella’s performance should be set in order to provide

sufficient LV unloading and adequate hemodynamic support,

avoiding excessive suction. This might be particularly

demanding over the first hours of support. In fact, the full

venous drainage and the aortic valve closure lead to frequent

LV size changes over this first period of time.

Although there were clinical reports proving the effectiveness

of Impella and IABP combination,37,38 a European expert user

group did not recommend the systematic simultaneous use of the

Impella device with IABP. First, Impella forward flow might be

attenuated by IABP during diastole. Second, this combination

might lead to misinterpretation of alarms, potential position

issues, and, finally, increased risk of hemolysis and thrombosis.13

The necessity to unload the LV ventricle during VA-ECMO

support might be summarized in four main scenarios, each of

which has specific features and goals that are described in the

following table (see Table 2).

Access Site, Impella Placement and Monitoring

The selection and management of the access site should

consider the patient’s anatomy and the operator’s experience.
Table 2

Clinical Scenarios and Detailed ECPella Configurations.

Stone heart (after eCPR)39 Acute Severe Myocardial

Dysfunction (AMI40,

Myocarditis41)

Configuration peripheral VA ECMO peripheral VA ECMO

Expected duration days days

Timing Early LV distension Early LV distension

Device Impella 2.5 or CP* Impella 2.5 or CP*

Impella Insertion 13-Fr or 14-Fr sheath Femoral

Artery

13-Fr or 14-Fr sheath Fem

Artery

Goal BTD, De-escalation, Myocardial

Recovery

De-escalation, Myocardial

Recovery

AMI, acute myocardial infarction; BTD, bridge to decision; BTT, bridge to transpla

* In combination with Impella RP in case of RV dysfunction.
The advisable site for the percutaneous placement is the com-

mon femoral artery, while the axillary artery is suitable in the

surgical approach. The appropriate access management techni-

ques should guarantee low risk of arterial complications such

as local bleeding and access site-related ischemia.44,45 How-

ever, considering the concomitant VA-ECMO support, the risk

of complications might be lower, as limb ischemia can be man-

aged by reperfusion via the ECMO circuit.33 On the other

hand, the ECMO-induced coagulopathy might be responsible

for a higher incidence of bleeding complications.

The positioning of the Impella device should prevent migra-

tion into the LV and avoid hemolysis, suction episodes, and

inadequate hemodynamic support; in particular, for long-term

support. The placement can be performed in the catheteriza-

tion laboratory or operating room, but also at the bedside,

which is particularly attractive for patients who are critically

unstable on VA-ECMO.19 The inlet should be placed approxi-

mately 3.5 cm (Impella 2.5, CP, and 5.0) or 5.0 cm (Impella

5.5) distal to the aortic valve without being close to the mitral

subvalvular apparatus or interfering with the anterior mitral

leaflet and papillary muscles. Bedside echocardiography

should be available, possibly transthoracic, to evaluate the cor-

rect placement, in addition to right ventricular function and

volume status13 (see Figure 5).

The ECPella monitoring requires a right radial arterial line

for oxygenation monitoring, a daily x-ray to assess pulmonary

edema, and regular echocardiographic studies, especially in

case of an abnormal positioning signal on the console monitor.

Echocardiography should be able to check the Impella posi-

tion, to exclude pericardial effusion, to evaluate cardiac cham-

ber loading, and to examine valvular function.46

However, decision-making during ECPella support might be

extremely demanding and requires direct and reliable hemody-

namic information. Therefore, advanced hemodynamic moni-

toring with a pulmonary artery catheter is strongly

recommended.47 These measurements help to better
Chronic Severe Myocardial

Dysfunction42 (End Stage

Chronic HF)

Myocardial Dysfunction in Post-

Cardiotomy Patients43

peripheral VA ECMO central VA ECMO

days to weeks 2-15 days

Early and delayed LV distension Early LV distension

Impella 5.0*, 5.5 Impella 2.5, CP or 5.0.5.5 based

on the clinical situation*

oral Surgical cut-down insertion

through 8-10mm Dacron graft

anastomosed to the axillary

artery

13-Fr or 14-Fr sheets or surgical

cut-down insertion through 8-

10mm Dacron graft

anastomosed to the axillary

artery or directly in the

ascending aorta.

BTT, BTD or Bridge to LVAD

implantation

Myocardial Recovery

nt; HF, heart failure.



Fig 5. Impella positioning. (1) Normal Impella position in parasternal long axis (3.5 cm from the aortic valve plane). (2) Impella position in aorta. (3) Impella posi-

tion too far in left ventricle. (4) Impella pigtail caught in papillary muscle.
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understand the complex changes in order to adjust device

flows, medical therapy and volume management.

Clinical Remarks

Firstly, clinical decisions basically should be guided by

carefully weighing potential therapeutic benefits and risks in

every individual patient, including the intended goal and

expected length of the bridging strategy under VA-ECMO.

Left ventricular overload at any time during VA-ECMO may

develop in up to 70% of patients,48 however, an urgent decom-

pression is undertaken in only roughly 10% of cases, whereas

an additional 20% of cases might need an unloading interven-

tion at a later stage.30 Notably, recent literature suggests

improved outcomes when adjunct unloading strategies are

employed.6 In routine clinical practice, patients under high-

flow VA-ECMO support (>4 L/min) and exhibiting a dilated

LV in the virtual absence of native left ventricular contractil-

ity, should be considered at a very high risk for significant LV

overload.

Secondly, the right-left ventricular interaction is of para-

mount importance, as sustained right ventricular contractility

may actually contribute to mechanical overload, which nega-

tively impacts on the failing left ventricular myocardium.23 In

this setting, despite right ventricular drainage, it still may be

able to eject enough blood via the left atrium into the failing

LV that is facing an increased afterload as mediated by the

retrogradely-directed extracorporeal flow in the aorta toward

the LV. Therefore, paradoxically, preserved right ventricular

function is a critical additional risk factor for significantly

overloading a failing LV under VA-ECMO support.

Thirdly, Impella automated controller algorithms may

detect suction at the device inflow in case of full LV unload-

ing. In fact, the suction alarm may be triggered by constant

high aorta-LV differential pressures and low pulsatility on the

aortic pressure waveform.
Finally, the patients who have worsening lung function sup-

ported with VA-ECMO may demonstrate the “Harlequin syn-

drome.”49 Impella seems to be the most effective method,

allowing earlier and expeditious weaning from VA-ECMO.50

This would focus not only on LV unloading, but also on the

respiratory system, which should be protected from injurious

mechanical ventilation.

Weaning

Patients treated with ECPella should be supported until

hemodynamics are stable with resolution of shock.

The de-escalating process should start by first removing ino-

tropes. Thereafter, VA-ECMO reduction should be pursued.

At this time, the focus should be on the right ventricle, as this

is the major limitation for de-escalating from biventricular to

univentricular support. If biventricular failure is predominant,

despite successful hemodynamic optimization, evaluation for

heart transplantation or biventricular support is warranted; if

left ventricular support only is required, de-escalation to an

axillary approach for a prolonged attempt at heart recovery

should be pursued. The axillary approach encompasses the use

of the Impella 5.0 and/or 5.5 regardless of the residual function

of the LV, in light of its dedicated tools for axillary surgery

that allow ambulation, better hemocompatibility, and a longer

pump duration.51 A total percutaneous approach with the

Impella implanted in the axillary artery may be envisioned in

the future in patients who are of small size and, therefore,

require lower flow.

This bridge-to-bridge strategy has proven very effective

in improving results in patients requiring a durable LVAD,

as it is associated with lower complications compared with

the direct transition from VA-ECMO to LVAD. Indeed,

from the hemodynamic standpoint, this is an ‘LVAD test’

that challenges the right ventricle and avoid futile

implants.52
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ECPella Advantages

The ECPella approach has some valuable advantages.

ECPella approach results are extremely attractive, since the

treatment of cardiogenic shock should be effective within a

short time frame after initiation of mechanical circulatory sup-

port. In fact, significant reduction of lactates53 and of the ino-

tropic score54 should be an important achievement within

24 hours. Impella provides additional flow to the ECMO and

overcomes the limitation of ECMO performance driven by the

cannula size. According to the size of the cannula usually

selected for femoro-femoral cannulation (21-29 Fr venous 15-

19 Fr arterial), the VA-ECMO pump would not provide more

than 5 L/min of flow. An associated LV pump provides an

additional flow that has to be viewed in a double perspective.

On the one hand, Impella is a ‘resuscitative’ flow, and on the

other hand, the device allows smoother weaning from mechan-

ical circulatory support.55 Indeed, ECMO removal is a com-

plex issue: patients will recover aortic pulsatility and normal

cardiac output, although echocardiography usually shows a

low ejection fraction, and this translates into a consistent num-

ber of patients who are weaned from ECMO but eventually

will die before hospital discharge.56,57

Furthermore, the ECPella approach guarantees the chance

for shorter duration of the extracorporeal support that is associ-

ated with more side effects in each patient.58 However, this

approach may prolong the total time when the patient is on a

pump. If it is assumed that medical treatment is the target for

the management of heart failure after the acute failure, the LV

pump might avoid the use of inotropes59 during weaning and

might facilitate the titration of ACE inhibitors and beta block-

ers under progressive lower levels of Impella support.

ECPella Shortcomings

The major ECPella shortcomings are bleeding complica-

tions, hemolysis, and ischemic complications.

Recently, Schrage et al showed higher rates of severe bleed-

ing (38.4% v 17.9%) and hemolysis (33.6% v 22.4%) in

ECPella support compared with VA-ECMO alone. Further-

more, the association between ECPella use and a higher likeli-

hood of interventions because of access site-related ischemia

was consistent. In fact, interventions because of access site-

related ischemia occurred in 21.6% of patients treated with

ECPella versus 12.3% of patients treated with VA-ECMO.

Furthermore, laparotomies because of abdominal compartment

syndrome were seen in 9.4% of patients treated with ECPella,

compared with only 3.7% of patients treated with VA-ECMO.

However, no differences were found in ischemic strokes or

bowel ischemia.6

On the one hand, the presence of two devices and related

arterial access may increase the likelihood of bleeding/ische-

mic complications.60 On the other hand, these complications

might be explained by the relatively large vascular access

required (12/14-French for the Impella 2.5/CP).61 Further-

more, Impella leads to a high shear stress on blood elements

and is associated with increased hemolysis.62
Interestingly, Pappalardo et al found a higher rate of need

for continuous veno-venous hemofiltration in patients sup-

ported with ECPella compared with those with VA-ECMO

alone.28 This was confirmed by Schrage et al in a large multi-

center study.6 Obviously, survivorship bias might, to a certain

degree, explain higher need for renal replacement therapy.

However, this association should be investigated by further

study. Finally, another critical and not negligible issue is repre-

sented by the cost of this combined configuration.
Conclusions

Up to now, the ECPella strategy has been discussed as a pri-

mary configuration. However, it is to be acknowledged that

this is far from the ‘real world’. Many patients are salvaged by

Impella implantation in combination with VA-ECMO because

complications related to LV distention have ensued. Further-

more, Impella patients escalate to ECMO because the severity

of shock has progressed, mostly due to concomitant right heart

failure or inadequate pump selection. This might be overcome

by the implementation of new concepts in the management of

cardiogenic shock patients: (1) systematic LV venting, (2)

assessment of the severity of shock by the inotropic score and

mechanical support strategy to avoid toxic catecholamine lev-

els, and (3) right ventricular ‘sensitivity’ and early application

of biventricular support. Further studies are needed to face this

demanding medical condition.
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